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Bracht et al., Energy Convers.Mgmt 38, S159-164 (1997)
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Hydrogen Selective Membranes in IGCC Plants

Challenges under WGS conditions of IGCC plants

• high temperature and pressure

• presence of impurities (H2S)
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IGCC efficiency

• without CO2 capture: 46.7%

• with conventional CO2 removal: 40.5%

With WGS MR and CO2 recovery: 42.8% based on 

• 35 atm feed, 20 atm permeate (15 atm pressure drop)

• 330oC in the feed

• hydrogen/carbon dioxide selectivity = 15

• hydrogen permeability = 0.2 mol/(m2.s.bar)

Membrane Area Needed: 2,200 m2 (400MW)

Bracht et al., Energy Convers.Mgmt 38, S159-164 (1997)
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Motivation: Hierarchical Manufacturing of Zeolite Films
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For a Review: 

Mark A. Snyder, Michael Tsapatsis, 

Angew. Chem. Int. Ed. 2007, 46, 7560–7573

Science 300:(5618), 456-460 (2003)

Angew. Chem. Int. Ed. 45, 1154-1158 (2006) 

Science 325 (5940), 590-594 (2009)

Nature Materials, 7(12), 984-991(2008)

Chemistry of Materials 10, 2497-2504 (1998) 

AIChE Journal, 42(11), 3020-3029 (1996) 
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Layer by Layer Deposition (JACS 132(2), 448-449 (2010))

5 layers of MCM-22/surfactant-templated-mesoporous-silica 

on porous alumina

1µm
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Comparison of Ideal Selectivity

The ideal selectivity (H2/CO2 and H2/N2) increased monotonically with 
temperature and improved with the number of deposition cycles.
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MCM-22/Silica Membranes for Hydrogen Separations
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Choi J. and Tsapatsis M. Journal of the American Chemical Society

132(2), 448-449 (2010) 

Experimental Demonstration of Selective Flake Composite Concept

7



Chemical Engineering & Materials ScienceUNIVERSITY OF MINNESOTA

Increase selectivity without 
decreasing throughput

1000 nm

H2 N2

Increase throughput without 
decreasing selectivity

100 nm

H2 N2

Advantages by Reduction in Flake Thickness
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Membrane Preparation Procedure

MCM22-P Swollen

Exfoliated Layers
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Purified nanosheets in toluene were filtered through porous 

alumina supports and then secondary growth was conducted.
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• Exfoliated ITQ-1 on Alumina Disk • After Secondary Growth of ITQ-1
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Performance of ITQ-1 Membrane
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(To be published)
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Summary of Experimental Achievement & Future Work

• Achievement

• prepared hydrogen permselective ITQ-1 membranes using exfoliated 

MWW structure

• Future Work

• working towards meeting proposed target for H2/CO2 selectivity

• developing ITQ-1 membranes on tubular supports and investigating 

their performance at higher temperatures
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Hydrothermal Treatment Conditions

Temperature: 350oC

Pressure: 10 bar (95% steam, 5% nitrogen)

Samples were analyzed in 21 days intervals
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Hydrothermal Stability Setup
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Hydrothermal Stability (~95% steam in nitrogen) at 350oC,10 bar
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Summary of Stability Analysis & Future Work

• Achievement

• developed material showing high hydrothermal stability 

• Future Work

• performing hydrothermal stability studies on other layered zeolites
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Membrane Reactor Modeling: Objectives and Approach

• Develop a WGS membrane reactor (MR) model

• perform simulation and optimization studies

• analyze the effect of reactor design on performance

• integrate model in IGCC unit

• Determine the membrane characteristics necessary to 

• achieve DOE R&D target goal of 90% CO2 capture (1),(2)

• obtain desired H2 recovery value of 95% (1)

• Satisfy transportation safety constraints of CO2 capture stream (1)

• low CO concentration obtained by reaching desired CO conversion value of 98%

• H2 molar fraction below flammability limit of 2%

• Minimize membrane cost as a function of surface area required

• Received input from DOE/NETL personnel (Drs. John Marano and Jared Ciferno)

(1) Marano, Report to DOE/NETL (2010)

(2) Marano and Ciferno, Energy Procedia 1, 361-368 (2009)
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MR Modeling Assumptions and Simulation Set Up 

• Assumptions

• 1-dimensional shell and tube reactor

• catalyst packed in the tube side

• thin membrane layer placed on surface of tube wall

• sweep gas flows in the shell side

• plug-flow operation for both shell and tube

• constant temperature and pressure

• steady-state operation

• ideal gas law

Composition (1):

CO = 24.43 %

H2O = 48.86 %

CO2 = 5.68 %

H2 = 19.33 %

Flow configurations

co-current

counter-current

Simulation conditions from literature

catalyst type and reaction rate (2)

reactor dimensions (3)

conditions consistent with IGCC 
specifications

Developed model validated using 
published simulation data (4)

(1) Marano, Report to DOE/NETL (2010)

(2) Choi and Stenger, J. Power Sources 124, 432-439 (2003)

(3) Amelio et al., Energy Convers. Mgmt 48, 2680-2693 (2007)

(4) Boutikos and Nikolakis, J. Membr. Sci. 350, 378-386 (2010)
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Counter-current Simulation Results: Concentration Profiles

Simulation conditions

MR length of 30 cm

QH2 = 0.1 mol/(s.m2.atm)

SH2/all = 1000

steam as sweep gas
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Counter-current Simulation Results: Changing Membrane Selectivity

Membrane Reactor

Parameter

Value [%]

(SH2/all = 1000)

Value [%] 

(SH2/all = 100)

Value [%]

(SH2/all = 10)

Target

[%]

99.84 99.34 95.02 98

99.06 99.00 97.21 95

98.97 90.15 29.07 90

96.31 96.62 98.30 95

44.27 43.14 34.05 44
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Membrane Reactor Optimization: Problem Formulation

Typical WGS reactor design alternatives (1),(2)

pre-shift, membrane separator, WGS reactor 

pre-shift, WGS membrane reactor

WGS reactor, membrane separator

stand-alone WGS membrane reactor 

Address all alternatives in one formulation

Optimization problem statement (3)

21

(1) Marano and Ciferno, Energy Procedia 1, 361-368 (2009)

(2) Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997)

(3) Lima et al., In preparation (2011)
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Membrane Reactor Optimization: Results

Benchmark for study: improve successful counter-current case

Problem initial guess: MR configuration

Solution for 1 year operating cycle

22

Length of membrane layer: Lm1 + Lm2 = 22.7 cm

Solution indicates

optimal design: short pre-shift reactor followed by long MR

potential savings in membrane material (≈ 25%)

large-scale (1) (Am ≈ 2000 m2)       savings as high as $5,000,000

(1) Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997)
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Modeling Conclusions & Future Work

• Conclusions

• MR model developed for simulation and optimization studies

• simulation results indicated successful counter-current cases

• optimization formulation guided selection of optimal reactor design for WGS reaction

• Future Work

• perform preliminary cost analysis using MR model

• develop IGCC system model

• first step: Matlab model of separate units (gasifier, ASU, turbines, and heat 

exchangers)

• simplified gasifier model developed assuming Conoco-Phillips design (1)

• integrate units (including MR) in IGCC plant (Matlab and Aspen simulations) 

(1) Jillson et al., J. Proc. Cont. 19, 1470-1485 (2009)
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